A Partial Condition Number for Linear Least Squares Problems
نویسندگان
چکیده
منابع مشابه
A Partial Condition Number for Linear Least Squares Problems
Abstract. We consider here the linear least squares problem miny∈Rn ‖Ay− b‖2, where b ∈ Rm and A ∈ Rm×n is a matrix of full column rank n, and we denote x its solution. We assume that both A and b can be perturbed and that these perturbations are measured using the Frobenius or the spectral norm for A and the Euclidean norm for b. In this paper, we are concerned with the condition number of a l...
متن کاملEfficient computation of condition estimates for linear least squares problems
Linear least squares (LLS) is a classical linear algebra problem in scientific computing, arising for instance in many parameter estimation problems. In addition to computing efficiently LLS solutions, an important issue is to assess the numerical quality of the computed solution. The notion of conditioning provides a theoretical framework that can be used to measure the numerical sensitivity o...
متن کاملLinear Least Squares Problems
A fundamental task in scientific computing is to estimate parameters in a mathematical model from collected data which are subject to errors. The influence of the errors can be reduced by using a greater number of data than the number of unknowns. If the model is linear, the resulting problem is then to “solve” an in general inconsistent linear system Ax = b, where A ∈ Rm×n and m ≥ n. In other ...
متن کاملCondition Numbers for Structured Least Squares Problems
This paper studies the normwise perturbation theory for structured least squares problems. The structures under investigation are symmetric, persymmetric, skewsymmetric, Toeplitz and Hankel. We present the condition numbers for structured least squares. AMS subject classification (2000): 15A18, 65F20, 65F25, 65F50.
متن کاملAsymptotic behaviour in linear least squares problems
The asymptotic behaviour of a class of least squares problems when subjected to structured perturbations is considered. It is permitted that the number of rows (observations) in the design matrix can be unbounded while the number of degrees of freedom (variables) is fixed. It is shown that for certain classes of random data the solution sensitivity depends asymptotically on the condition number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2007
ISSN: 0895-4798,1095-7162
DOI: 10.1137/050643088